Watch Venus Brush Past Saturn This Weekend – Universe Today

Saturn taken by Joe Lopint on June 26, 2012, AT106 and 4X Televue Powermate, Imaging Source DK0021 video camera, ~1000 images aligned and stacked with Registax

Image Credit:  Joe Lopint 

WATCH VENUS BRUSH PAST SATURN THIS WEEKEND
by David Dickinson

Welcome to 2016! The early morning sky is where the action is this first week of the year. We were out early this Monday morning as skies cleared over Central Florida on our yearly vigil for the Quadrantid meteors. Though only a handful of meteors graced the dawn skies, we were treated to a splendid line-up, including Jupiter, Mars, Spica, Antares, Saturn, Venus, the waning crescent Moon AND a fine binocular view of Comet C/2013 US10 Catalina. We’re always a bit skeptical of the Quadrantids. Its slim peak, coupled with a relative dearth of bright meteors makes it the elusive ‘unicorn’ of annual major meteor showers. Occurring in the dead of northern hemisphere winter certainly doesn’t help the ‘Quads in the PR department. But there’s another reason to brave the cold this week, as two naked eye planets close in for one of the tightest conjunctions of 2016.

Read Full Story Here

How will we finally image the event horizon of a black hole? : By Ethan Siegel

 

large.en (Modified)

Image credit: NASA/CXC/Amherst College/D.Haggard et al., of the galactic center in X-rays.

One hundred years ago, Albert Einstein first put forth his theory of General Relativity, which laid out the relationship between spacetime and the matter and energy present within it. While it successfully recovered Newtonian gravity and predicted the additional precession of Mercury’s orbit, the only exact solution that Einstein himself discovered was the trivial one: that for completely empty space. Less than two months after releasing his theory, however, the German scientist Karl Schwarzschild provided a true exact solution, that of a massive, infinitely dense object, a black hole.

One of the curious things that popped out of Schwarzschild’s solution was the existence of an event horizon, or a region of space that was so severely curved that nothing, not even light, could escape from it. The size of this event horizon would be directly proportional to the mass of the black hole. A black hole the mass of Earth would have an event horizon less than a centimeter in radius; a black hole the mass of the sun would have an event horizon just a few kilometers in radius; and a supermassive black hole would have an event horizon the size of a planetary orbit.

Our galaxy has since been discovered to house a black hole about four million solar masses in size, with an event horizon about 23.6 million kilometers across, or about 40 percent the size of Mercury’s orbit around the sun. At a distance of 26,000 light years, it’s the largest event horizon in angular size visible from Earth, but at just 19 micro-arc-seconds, it would take a telescope the size of Earth to resolve it – a practical impossibility.

But all hope isn’t lost! If instead of a single telescope, we built an array of telescopes located all over Earth, we could simultaneously image the galactic center, and use the technique of VLBI (very long-baseline interferometry) to resolve the black hole’s event horizon. The array would only have the light-gathering power of the individual telescopes, meaning the black hole (in the radio) will appear very faint, but they can obtain the resolution of a telescope that’s the distance between the farthest telescopes in the array! The planned Event Horizon Telescope, spanning four different continents (including Antarctica), should be able to resolve under 10 micro-arc-seconds, imaging a black hole directly for the first time and answering the question of whether or not they truly contain an event horizon. What began as a mere mathematical solution is now just a few years away from being observed and known for certain!

SP-Logo-300.en

The Ins and Outs of NASA’s First Launch of SLS and Orion|NASA

Orion EM1 Configuration

During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
Credits: NASA

 

NASA is hard at work building the Orion spacecraft, Space Launch System (SLS) rocket and the ground systems needed to send astronauts into deep space. The agency is developing the core capabilities needed to enable the journey to Mars.

Orion’s first flight atop the SLS will not have humans aboard, but it paves the way for future missions with astronauts. Ultimately, it will help NASA prepare for missions to the Red Planet. During this flight, currently designated Exploration Mission-1 (EM-1), the spacecraft will travel thousands of miles beyond the moon over the course of about a three-week mission.

It will launch on the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown. Orion will stay in space longer than any ship for astronauts has done without docking to a space station and return home faster and hotter than ever before.

“This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington. “It will blaze a trail that people will follow on the next Orion flight, pushing the edges of the envelope to prepare for that mission.”

Read Full Story Here