Our Solar System Is Almost Normal, But Not Quite : by Ethan Siegel

 

kep

Images credit: NASA / Kepler Dan Fabricky (L), of a selection of the known Kepler exoplanets; Rebecca G. Martin and Mario Livio (2015) ApJ 810, 105 (R), of 287 confirmed exoplanets relative to our eight solar system planets.

It was just over 20 years ago that the very first exoplanet was found and confirmed to be orbiting a star not so different from our own sun. Fast forward to the present day, and the stellar wobble method, wherein the gravitational tug of a planet perturbs a star’s motion, has been surpassed in success by the transit method, wherein a planet transits across the disk of its parent star, blocking a portion of its light in a periodic fashion. Thanks to these methods and NASA’s Kepler spacecraft, we’ve identified many thousands of candidate planets, with nearly 2,000 of them having been confirmed, and their masses and densities measured.

 

The gas giants found in our solar system actually turn out to be remarkably typical: Jupiter-mass planets are very common, with less-massive and more-massive giants both extremely common. Saturn—the least dense world in our solar system—is actually of a fairly typical density for a gas giant world. It turns out that there are many planets out there with Saturn’s density or less. The rocky worlds are a little harder to quantify, because our methods and missions are much better at finding higher-mass planets than low-mass ones. Nevertheless, the lowest mass planets found are comparable to Earth and Venus, and range from just as dense to slightly less dense. We also find that we fall right into the middle of the “bell curve” for how old planetary systems are: we’re definitely typical in that regard.

 

But there are a few big surprises, which is to say there are three major ways our solar system is an outlier among the planets we’ve observed:

 

  • All our solar system’s planets are significantly farther out than the average distance for exoplanets around their stars. More than half of the planets we’ve discovered are closer to their star than Mercury is to ours, which might be a selection effect (closer planets are easier to find), but it might indicate a way our star is unusual: being devoid of very close-in planets.
  • All eight of our solar system’s planets’ orbits are highly circular, with even the eccentric Mars and Mercury only having a few percent deviation from a perfect circle. But most exoplanets have significant eccentricities, which could indicate something unusual about us.
  • And finally, one of the most common classes of exoplanet—a super-Earth or mini-Neptune, with 1.5-to-10 times the mass of Earth—is completely missing from our solar system.

 

Until we develop the technology to probe for lower-mass planets at even greater distances around other star systems, we won’t truly know for certain how unusual we really are!

SP-Logo-300.en

Final Kiss of Two Stars Heading for Catastrophe | ESO


Using ESO’s Very Large Telescope, an international team of astronomers have found the hottest and most massive double star with components so close that they touch each other. The two stars in the extreme system VFTS 352 could be heading for a dramatic end, during which the two stars either coalesce to create a single giant star, or form a binary black hole.
Credit:ESO/L. Calçada

The double star system VFTS 352 is located about 160 000 light-years away in the Tarantula Nebula [1]. This remarkable region is the most active nursery of new stars in the nearby Universe and new observations from ESO’s VLT [2] have revealed that this pair of young stars is among the most extreme and strangest yet found. VFTS 352 is composed of two very hot, bright and massive stars that orbit each other in little more than a day. The centres of the stars are separated by just 12 million kilometres [3]. In fact, the stars are so close that their surfaces overlap and a bridge has formed between them. VFTS 352 is not only the most massive known in this tiny class of “overcontact binaries” — it has a combined mass of about 57 times that of the Sun — but it also contains the hottest components — with surface temperatures above 40 000 degrees Celsius. Extreme stars like the two components of VFTS 352, play a key role in the evolution of galaxies and are thought to be the main producers of elements such as oxygen. Such double stars are also linked to exotic behaviour such as that shown by “vampire stars”, where a smaller companion star sucks matter from the surface of its larger neighbour (eso1230).

Read Full Story Here

New Horizons Picks Up Styx | NASA

This Long Range Reconnaissance Imager (LORRI) composite image of Pluto’s smallest moon, Styx, was taken July 14, 2015.
NASA Spacecraft Observes Pluto’s Smallest Moon New images from NASA’s New Horizons reveal the size and shape of Pluto’s smallest moon, Styx. Styx – also the faintest of Pluto’s five moons – was discovered using the Hubble Space Telescope in 2012, when New Horizons was more than two-thirds into its voyage to Pluto. The Styx images downlinked on Oct. 5, 2015, were taken by the Long Range Reconnaissance Imager (LORRI) on July 13, approximately 12.5 hours before New Horizons’ closest approach to Pluto.

Read Full Story Here