Eyes on the Sky: Jan 20 thru Jan 26

GLogo

John Dobson, Inventor of the Popular Dobsonian Telescope, Dead at 98

John Dobson, amateur astronomer and astronomy popularizer, died Jan. 14 at 98 in Burbank, Calif. Credit: Wikipedia

John Dobson, amateur astronomer and astronomy popularizer, died Jan. 14 at 98 in Burbank, Calif. Credit: Wikipedia

The cosmos lost a good soul Wednesday. John Dobson, famous as the creator of the simple, low-cost Dobsonian telescope, passed away on Jan. 15, 2014. His obituary appeared on the website of the Sidewalk Astronomers:

“It is with heavy hearts that we must report the passing of John Dobson. He died peacefully this morning, Wednesday, January 15th, in Burbank, California. He was 98 years old. He leaves behind a son, numerous close friends, and fans and admirers worldwide.

On March 8th, in honor of John, this year’s ISAN (International Sidewalk Astronomy Night) will be dedicated to his memory. Amateur astronomers around the globe can join in and celebrate John’s life and continue to carry the torch that he lit back in 1968 when he co-founded the San Francisco Sidewalk Astronomers.”

via Universe Today: John Dobson, Inventor of the Popular Dobsonian Telescope, Dead at 98.

Surprising Young Stars in the Oldest Places in the Universe:Space Place

globular-cluster.en

Globular Cluster NGC 6397. Credit: ESA & Francesco Ferraro (Bologna Astronomical Observatory) / NASA, Hubble Space Telescope, WFPC2.

By Dr. Ethan Siegel

Littered among the stars in our night sky are the famed deep-sky objects. These range from extended spiral and elliptical galaxies millions or even billions of light years away to the star clusters, nebulae, and stellar remnants strewn throughout our own galaxy. But there’s an intermediate class of objects, too: the globular star clusters, self-contained clusters of stars found in spherically-distributed halos around each galaxy.

Back before there were any stars or galaxies in the universe, it was an expanding, cooling sea of matter and radiation containing regions where the matter was slightly more dense in some places than others. While gravity worked to pull more and more matter into these places, the pressure from radiation pushed back, preventing the gravitational collapse of gas clouds below a certain mass. In the young universe, this meant no clouds smaller than around a few hundred thousand times the mass of our Sun could collapse. This coincides with a globular cluster’s typical mass, and their stars are some of the oldest in the universe!

These compact, spherical collections of stars are all less than 100 light-years in radius, but typically have around 100,000 stars inside them, making them nearly 100 times denser than our neighborhood of the Milky Way! The vast majority of globular clusters have extremely few heavy elements (heavier than helium), as little as 1% of what we find in our Sun. There’s a good reason for this: our Sun is only 4.5 billion years old and has seen many generations of stars live-and-die, while globular clusters (and the stars inside of them) are often over 13 billion years old, or more than 90% the age of the universe! When you look inside one of these cosmic collections, you’re looking at some of the oldest stellar swarms in the known universe.

Yet when you look at a high-resolution image of these relics from the early universe, you’ll find a sprinkling of hot, massive, apparently young blue stars! Is there a stellar fountain of youth inside? Kind of! These massive stellar swarms are so dense — especially towards the center — that mergers, mass siphoning and collisions between stars are quite common. When two long-lived, low-mass stars interact in these ways, they produce a hotter, bluer star that will be much shorter lived, known as a blue straggler star. First discovered by Allan Sandage in 1953, these young-looking stars arise thanks to stellar cannibalism. So enjoy the brightest and bluest stars in these globular clusters, found right alongside the oldest known stars in the universe!

Learn about a recent globular cluster discovery here: http://www.nasa.gov/press/2013/september/hubble-uncovers-largest-known-group-of-star-clusters-clues-to-dark-matter.

Kids can learn more about how stars work by listening to The Space Place’s own Dr. Marc: http://spaceplace.nasa.gov/podcasts/en/#stars.

Globular Cluster NGC 6397. Credit: ESA & Francesco Ferraro (Bologna Astronomical Observatory) / NASA, Hubble Space Telescope, WFPC2.

SpacePlace_1in.en