NASA’s Chandra Sees Eclipsing Planet in X-rays for First Time | NASA

This graphic depicts HD 189733b, the first exoplanet caught passing in front of its parent star in X-rays.
This graphic depicts HD 189733b, the first exoplanet caught passing in front of its parent star in X-rays.
Image Credit: X-ray: NASA/CXC/SAO/K.Poppenhaeger et al; Illustration: NASA

For the first time since exoplanets, or planets around stars other than the sun, were discovered almost 20 years ago, X-ray observations have detected an exoplanet passing in front of its parent star.

An advantageous alignment of a planet and its parent star in the system HD 189733, which is 63 light-years from Earth, enabled NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM Newton Observatory to observe a dip in X-ray intensity as the planet transited the star.

“Thousands of planet candidates have been seen to transit in only optical light,” said Katja Poppenhaeger of Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., who led a new study to be published in the Aug. 10 edition of The Astrophysical Journal. “Finally being able to study one in X-rays is important because it reveals new information about the properties of an exoplanet.”

The team used Chandra to observe six transits and data from XMM Newton observations of one.

The planet, known as HD 189733b, is a hot Jupiter, meaning it is similar in size to Jupiter in our solar system but in very close orbit around its star. HD 189733b is more than 30 times closer to its star than Earth is to the sun. It orbits the star once every 2.2 days.

HD 189733b is the closest hot Jupiter to Earth, which makes it a prime target for astronomers who want to learn more about this type of exoplanet and the atmosphere around it. They have used NASA’s Kepler space telescope to study it at optical wavelengths, and NASA’s Hubble Space Telescope to confirm it is blue in color as a result of the preferential scattering of blue light by silicate particles in its atmosphere.

Read Full Story NASA’s Chandra Sees Eclipsing Planet in X-rays for First Time | NASA.

NASA’s Van Allen Probes Discover Particle Accelerator in the Heart of Earth’s Radiation Belts | NASA

Particle acceleration comes from the Van Allen radiation belts.
Recent observations by NASA’s twin Van Allen Probes show that particles in the radiation belts surrounding Earth are accelerated by a local kick of energy, helping to explain how these particles reach speeds of 99 percent the speed of light.
Image Credit: G. Reeves/M. Henderson

Scientists have discovered a massive particle accelerator in the heart of one of the harshest regions of near-Earth space, a region of super-energetic, charged particles surrounding the globe called the Van Allen radiation belts. Scientists knew that something in space accelerated particles in the radiation belts to more than 99 percent the speed of light but they didn’t know what that something was. New results from NASA’s Van Allen Probes now show that the acceleration energy comes from within the belts themselves. Particles inside the belts are sped up by local kicks of energy, buffeting the particles to ever faster speeds, much like a perfectly timed push on a moving swing.

The discovery that the particles are accelerated by a local energy source is akin to the discovery that hurricanes grow from a local energy source, such as a region of warm ocean water. In the case of the radiation belts, the source is a region of intense electromagnetic waves, tapping energy from other particles located in the same region. Knowing the location of the acceleration will help scientists improve space weather predictions, because changes in the radiation belts can be risky for satellites near Earth. The results were published in Science magazine on July 25, 2013.

In order for scientists to understand the belts better, the Van Allen Probes were designed to fly straight through this intense area of space. When the mission launched in August 2012, it had top-level goals to understand how particles in the belts are accelerated to ultra-high energies, and how the particles can sometimes escape. By determining that this superfast acceleration comes from these local kicks of energy, as opposed to a more global process, scientists have been able to definitively answer one of those important questions for the first time.

“This is one of the most highly anticipated and exciting results from the Van Allen Probes,” said David Sibeck, Van Allen Probes project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “It goes to the heart of why we launched the mission.”

The radiation belts were discovered upon the launch of the very first successful U.S. satellites sent into space, Explorers I and III. It was quickly realized that the belts were some of the most hazardous environments a spacecraft can experience. Most satellite orbits are chosen to duck below the radiation belts or circle outside of them, and some satellites, such as GPS spacecraft, must operate between the two belts. When the belts swell due to incoming space weather, they can encompass these spacecraft, exposing them to dangerous radiation. Indeed, a significant number of permanent failures on spacecraft have been caused by radiation. With enough warning, we can protect technology from the worst consequences, but such warning can only be achieved if we truly understand the dynamics of what’s happening inside these mysterious belts.

“Until the 1990s, we thought that the Van Allen belts were pretty well-behaved and changed slowly,” said Geoff Reeves, the first author on the paper and a radiation belt scientist at Los Alamos National Laboratory in Los Alamos, N.M. “With more and more measurements, however, we realized how quickly and unpredictably the radiation belts changed. They are basically never in equilibrium, but in a constant state of change.”

Read Full Story NASA’s Van Allen Probes Discover Particle Accelerator in the Heart of Earth’s Radiation Belts | NASA.

Kepler Mission Manager Update: Initial Recovery Tests | NASA

On Thursday, July 18, 2013 the team initiated exploratory recovery tests on the spacecraft’s two failed wheels. The recovery tests are a series of steps to characterize the performance of Reaction Wheels (RW) 4 and 2, and to determine if either could be returned to operation.

The initial test began on Thursday, July 18, 2013, with RW4. In response to test commands, wheel 4 did not spin in the positive (or clockwise) direction but the wheel did spin in the negative (or counterclockwise) direction. Wheel 4 is thought to be the more seriously damaged of the two.

On Monday, July 22, 2013, the team proceeded with a test of RW2. Wheel 2 responded to test commands and spun in both directions.

Over the next two weeks, engineers will review the data from these tests and consider what steps to take next. Although both wheels have shown motion, the friction levels will be critical in future considerations. The details of the wheel friction are under analysis.

Kepler requires extremely precise pointing to detect the faint periodic dimming of distant starlight— the telltale sign of a planet transiting the face of its host star. Too much friction from the reaction wheels can cause vibration and impact the pointing precision of the telescope.

Via Kepler Mission Manager Update: Initial Recovery Tests | NASA.