Kepler Planet-Hunting Mission in Jeopardy: Universe Today

A diagram of the Kepler space telescope. Credit: NASA

A diagram of the Kepler space telescope. Credit: NASA

NASA’s Kepler telescope has lost its ability to precisely point toward stars, putting its exoplanet search in jeopardy. One of the reaction wheels –devices which enable the spacecraft to aim in different directions without firing thrusters – has failed. This is of grave concern because last year reaction wheel #2 failed, and now #4 has failed. Kepler scientists say the spacecraft needs at least three reaction wheels to be able to point precisely enough to hunt for planets orbiting distant stars.

“We need three wheels in service to give us the pointing precision to enable us to find planets,” said Bill Borucki, Kepler principal investigator, during a press briefing today. “Without three wheels it is unclear whether we could continue to do anything on that order.”

But the Kepler team said there are still possibilities of keeping the spacecraft in working order, or perhaps even finding other opportunities for different science for Kepler, something that doesn’t require such precise pointing abilities.

via .Universe Today-Kepler Planet-Hunting Mission in Jeopardy.

Space Warps [Zooniverse], Citizen Science | Scientific American

Courtesy of the Zooniverse

Zooniverse’s Space Warps project calls on citizen scientists to help discover elusive objects in the universe by looking through images that have never before been seen. Computer algorithms have already scanned the images, but there are likely to be many more space warps that the algorithms have missed. Space Warps’ creators think that it’s only with human help that all of them will be found.

Einstein’s theory of gravity, General Relativity, predicted that massive objects, such as stars, would bend the space around them such that passing light rays follow curved paths. Evidence for this theory was first obtained by Arthur Eddington in 1919, when during a solar eclipse he observed that stars near the edge of the Sun appeared to be slightly out of position.

via Space Warps [Zooniverse], Citizen Science | Scientific American.

Saturn Is Shaking Its Rings: Scientific American

saturn, saturn rings

Image: NASA

Saturn’s rings are such a spectacle that you can see them through even a modest telescope. Made mostly of water ice, the rings contain countless particles, large and small, that orbit the planet in a thin plane. For decades scientists have known that gravitational tugs from Saturn’s many moons imprint patterns on the rings. Now they have discovered a new ring sculptor: oscillations of the planet itself, which promise insight into the interior of the solar system’s second-largest planet.

The discovery came about because of a close inspection of Saturn’s rings. From outermost to innermost, the three main rings are named A, B and C. In 1980, when the Voyager 1 spacecraft flew past, it found grooves in each ring that resemble those on a vinyl record. The gravitational pulls of Saturn’s moons make waves, mostly in the A ring, because that’s the one closest to the moons.

In 1991, however, Paul Rosen, then at Stanford University, and his colleagues used Voyager data to discover waves in the C ring, the one nearest the planet. Although the moons accounted for some of these waves, no one knew what caused the others.

via Saturn Is Shaking Its Rings: Scientific American.