NASA Invites the Public to Fly Along with Voyager

Artist's concept of Voyager and an updated gauge

Image credit: NASA/JPL-Caltech › Larger view

A gauge on the Voyager home page, http://voyager.jpl.nasa.gov, tracks levels of two of the three key signs scientists believe will appear when the spacecraft leave our solar neighborhood and enter interstellar space.

When the three signs are verified, scientists will know that one of the Voyagers has hurtled beyond the magnetic bubble the sun blows around itself, which is known as the heliosphere.

The gauge indicates the level of fast-moving charged particles, mainly protons, originating from far outside the heliosphere, and the level of slower-moving charged particles, also mainly protons, from inside the heliosphere. If the level of outside particles jumps dramatically and the level of inside particles drops precipitously, and these two levels hold steady, that means one of the spacecraft is closing in on the edge of interstellar space. These data are updated every six hours.

Scientists then need only see a change in the direction of the magnetic field to confirm that the spacecraft has sailed beyond the breath of the solar wind and finally arrived into the vast cosmic ocean between stars. The direction of the magnetic field, however, requires periodic instrument calibrations and complicated analyses. These analyses typically take a few months to return after the charged particle data are received on Earth.

Voyager 1, the most distant human-made spacecraft, appears to have reached this last region before interstellar space, which scientists have called “the magnetic highway.” Inside particles are zooming out and outside particles are zooming in. However, Voyager 1 has not yet seen a change in the direction of the magnetic field, so the consensus among the Voyager team is that it has not yet left the heliosphere.

Read Full Story Here

NASA – NASA’s Hubble Sees a Horsehead of a Different Color

Horsehead Nebula in infrared

Credit:NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
› Larger image

Astronomers have used NASA’s Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory’s launch aboard the space shuttle Discovery on April 24, 1990.

Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light.

Hubble has been producing ground-breaking science for two decades. During that time, it has benefited from a slew of upgrades from space shuttle missions, including the 2009 addition of a new imaging workhorse, the high-resolution Wide Field Camera 3 that took the new portrait of the Horsehead.

via NASA – NASA’s Hubble Sees a Horsehead of a Different Color.

NASA – Hubble Sees a Unique Cluster: One of the Hidden 15

Palomar 2

Credit: ESA/NASA, Hubble
› Larger image

 

Palomar 2 is part of a group of 15 globulars known as the Palomar clusters. These clusters, as the name suggests, were discovered in survey plates from the first Palomar Observatory Sky Survey in the 1950s, a project that involved some of the most well-known astronomers of the day, including Edwin Hubble. They were discovered quite late because they are so faint — each is either extremely remote, very heavily hidden behind blankets of dust, or has a very small number of remaining stars.

This particular cluster is unique in more than one way. For one, it is the only globular cluster that we see in this part of the sky, the northern constellation of Auriga (The Charioteer). Globular clusters orbit the center of a galaxy like the Milky Way in the same way that satellites circle around the Earth. This means that they normally lie closer in to the galactic center than we do, and so we almost always see them in the same region of the sky. Palomar 2 is an exception to this, as it is around five times further away from the center of the Milky Way than other clusters. It also lies in the opposite direction — further out than Earth — and so it is classed as an “outer halo” globular.

via NASA – Hubble Sees a Unique Cluster: One of the Hidden 15.