How will we finally image the event horizon of a black hole? : By Ethan Siegel

 

large.en (Modified)

Image credit: NASA/CXC/Amherst College/D.Haggard et al., of the galactic center in X-rays.

One hundred years ago, Albert Einstein first put forth his theory of General Relativity, which laid out the relationship between spacetime and the matter and energy present within it. While it successfully recovered Newtonian gravity and predicted the additional precession of Mercury’s orbit, the only exact solution that Einstein himself discovered was the trivial one: that for completely empty space. Less than two months after releasing his theory, however, the German scientist Karl Schwarzschild provided a true exact solution, that of a massive, infinitely dense object, a black hole.

One of the curious things that popped out of Schwarzschild’s solution was the existence of an event horizon, or a region of space that was so severely curved that nothing, not even light, could escape from it. The size of this event horizon would be directly proportional to the mass of the black hole. A black hole the mass of Earth would have an event horizon less than a centimeter in radius; a black hole the mass of the sun would have an event horizon just a few kilometers in radius; and a supermassive black hole would have an event horizon the size of a planetary orbit.

Our galaxy has since been discovered to house a black hole about four million solar masses in size, with an event horizon about 23.6 million kilometers across, or about 40 percent the size of Mercury’s orbit around the sun. At a distance of 26,000 light years, it’s the largest event horizon in angular size visible from Earth, but at just 19 micro-arc-seconds, it would take a telescope the size of Earth to resolve it – a practical impossibility.

But all hope isn’t lost! If instead of a single telescope, we built an array of telescopes located all over Earth, we could simultaneously image the galactic center, and use the technique of VLBI (very long-baseline interferometry) to resolve the black hole’s event horizon. The array would only have the light-gathering power of the individual telescopes, meaning the black hole (in the radio) will appear very faint, but they can obtain the resolution of a telescope that’s the distance between the farthest telescopes in the array! The planned Event Horizon Telescope, spanning four different continents (including Antarctica), should be able to resolve under 10 micro-arc-seconds, imaging a black hole directly for the first time and answering the question of whether or not they truly contain an event horizon. What began as a mere mathematical solution is now just a few years away from being observed and known for certain!

SP-Logo-300.en

The Ins and Outs of NASA’s First Launch of SLS and Orion|NASA

Orion EM1 Configuration

During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
Credits: NASA

 

NASA is hard at work building the Orion spacecraft, Space Launch System (SLS) rocket and the ground systems needed to send astronauts into deep space. The agency is developing the core capabilities needed to enable the journey to Mars.

Orion’s first flight atop the SLS will not have humans aboard, but it paves the way for future missions with astronauts. Ultimately, it will help NASA prepare for missions to the Red Planet. During this flight, currently designated Exploration Mission-1 (EM-1), the spacecraft will travel thousands of miles beyond the moon over the course of about a three-week mission.

It will launch on the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown. Orion will stay in space longer than any ship for astronauts has done without docking to a space station and return home faster and hotter than ever before.

“This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington. “It will blaze a trail that people will follow on the next Orion flight, pushing the edges of the envelope to prepare for that mission.”

Read Full Story Here

Our Solar System Is Almost Normal, But Not Quite : by Ethan Siegel

 

kep

Images credit: NASA / Kepler Dan Fabricky (L), of a selection of the known Kepler exoplanets; Rebecca G. Martin and Mario Livio (2015) ApJ 810, 105 (R), of 287 confirmed exoplanets relative to our eight solar system planets.

It was just over 20 years ago that the very first exoplanet was found and confirmed to be orbiting a star not so different from our own sun. Fast forward to the present day, and the stellar wobble method, wherein the gravitational tug of a planet perturbs a star’s motion, has been surpassed in success by the transit method, wherein a planet transits across the disk of its parent star, blocking a portion of its light in a periodic fashion. Thanks to these methods and NASA’s Kepler spacecraft, we’ve identified many thousands of candidate planets, with nearly 2,000 of them having been confirmed, and their masses and densities measured.

 

The gas giants found in our solar system actually turn out to be remarkably typical: Jupiter-mass planets are very common, with less-massive and more-massive giants both extremely common. Saturn—the least dense world in our solar system—is actually of a fairly typical density for a gas giant world. It turns out that there are many planets out there with Saturn’s density or less. The rocky worlds are a little harder to quantify, because our methods and missions are much better at finding higher-mass planets than low-mass ones. Nevertheless, the lowest mass planets found are comparable to Earth and Venus, and range from just as dense to slightly less dense. We also find that we fall right into the middle of the “bell curve” for how old planetary systems are: we’re definitely typical in that regard.

 

But there are a few big surprises, which is to say there are three major ways our solar system is an outlier among the planets we’ve observed:

 

  • All our solar system’s planets are significantly farther out than the average distance for exoplanets around their stars. More than half of the planets we’ve discovered are closer to their star than Mercury is to ours, which might be a selection effect (closer planets are easier to find), but it might indicate a way our star is unusual: being devoid of very close-in planets.
  • All eight of our solar system’s planets’ orbits are highly circular, with even the eccentric Mars and Mercury only having a few percent deviation from a perfect circle. But most exoplanets have significant eccentricities, which could indicate something unusual about us.
  • And finally, one of the most common classes of exoplanet—a super-Earth or mini-Neptune, with 1.5-to-10 times the mass of Earth—is completely missing from our solar system.

 

Until we develop the technology to probe for lower-mass planets at even greater distances around other star systems, we won’t truly know for certain how unusual we really are!

SP-Logo-300.en