The Closest New Stars To Earth By Ethan Siegel

SP1

Image credit: NASA and ESA Hubble Space Telescope. Acknowledgements: Kevin Luhman (Pennsylvania State University), and Judy Schmidt, of the Chamaeleon cloud and a newly-forming star within it—HH 909A—emitting narrow streams of gas from its poles.

When you think about the new stars forming in the Milky Way, you probably think of the giant star-forming regions like the Orion Nebula, containing thousands of new stars with light so bright it’s visible to the naked eye. At over 400 parsecs (1,300 light years) distant, it’s one of the most spectacular sights in the night sky, and the vast majority of the light from galaxies originates from nebulae like this one. But its great luminosity and relative proximity makes it easy to overlook the fact that there are a slew of much closer star-forming regions than the Orion Nebula; they’re just much, much fainter.

If you get a collapsing molecular cloud many hundreds of thousands (or more) times the mass of our sun, you’ll get a nebula like Orion. But if your cloud is only a few thousand times the sun’s mass, it’s going to be much fainter. In most instances, the clumps of matter within will grow slowly, the neutral matter will block more light than it reflects or emits, and only a tiny fraction of the stars that form—the most massive, brightest ones—will be visible at all. Between just 400 and 500 light years away are the closest such regions to Earth: the molecular clouds in the constellations of Chamaeleon and Corona Australis. Along with the Lupus molecular clouds (about 600 light years distant), these dark, light-blocking patches are virtually unknown to most sky watchers in the northern hemisphere, as they’re all southern hemisphere objects.

In visible light, these clouds appear predominantly as dark patches, obscuring and reddening the light of background stars. In the infrared, though, the gas glows brilliantly as it forms new stars inside. Combined near-infrared and visible light observations, such as those taken by the Hubble Space Telescope, can reveal the structure of the clouds as well as the young stars inside. In the Chameleon cloud, for example, there are between 200 and 300 new stars, including over 100 X-ray sources (between the Chamaeleon I and II clouds), approximately 50 T-Tauri stars and just a couple of massive, B-class stars. There’s a third dark, molecular cloud (Chamaeleon III) that has not yet formed any stars at all.

While the majority of new stars form in large molecular clouds, the closest new stars form in much smaller, more abundant ones. As we reach out to the most distant quasars and galaxies in the universe, remember that there are still star-forming mysteries to be solved right here in our own backyard.

SP-Logo-300.en

Watch Venus Brush Past Saturn This Weekend – Universe Today

Saturn taken by Joe Lopint on June 26, 2012, AT106 and 4X Televue Powermate, Imaging Source DK0021 video camera, ~1000 images aligned and stacked with Registax

Image Credit:  Joe Lopint 

WATCH VENUS BRUSH PAST SATURN THIS WEEKEND
by David Dickinson

Welcome to 2016! The early morning sky is where the action is this first week of the year. We were out early this Monday morning as skies cleared over Central Florida on our yearly vigil for the Quadrantid meteors. Though only a handful of meteors graced the dawn skies, we were treated to a splendid line-up, including Jupiter, Mars, Spica, Antares, Saturn, Venus, the waning crescent Moon AND a fine binocular view of Comet C/2013 US10 Catalina. We’re always a bit skeptical of the Quadrantids. Its slim peak, coupled with a relative dearth of bright meteors makes it the elusive ‘unicorn’ of annual major meteor showers. Occurring in the dead of northern hemisphere winter certainly doesn’t help the ‘Quads in the PR department. But there’s another reason to brave the cold this week, as two naked eye planets close in for one of the tightest conjunctions of 2016.

Read Full Story Here

How will we finally image the event horizon of a black hole? : By Ethan Siegel

 

large.en (Modified)

Image credit: NASA/CXC/Amherst College/D.Haggard et al., of the galactic center in X-rays.

One hundred years ago, Albert Einstein first put forth his theory of General Relativity, which laid out the relationship between spacetime and the matter and energy present within it. While it successfully recovered Newtonian gravity and predicted the additional precession of Mercury’s orbit, the only exact solution that Einstein himself discovered was the trivial one: that for completely empty space. Less than two months after releasing his theory, however, the German scientist Karl Schwarzschild provided a true exact solution, that of a massive, infinitely dense object, a black hole.

One of the curious things that popped out of Schwarzschild’s solution was the existence of an event horizon, or a region of space that was so severely curved that nothing, not even light, could escape from it. The size of this event horizon would be directly proportional to the mass of the black hole. A black hole the mass of Earth would have an event horizon less than a centimeter in radius; a black hole the mass of the sun would have an event horizon just a few kilometers in radius; and a supermassive black hole would have an event horizon the size of a planetary orbit.

Our galaxy has since been discovered to house a black hole about four million solar masses in size, with an event horizon about 23.6 million kilometers across, or about 40 percent the size of Mercury’s orbit around the sun. At a distance of 26,000 light years, it’s the largest event horizon in angular size visible from Earth, but at just 19 micro-arc-seconds, it would take a telescope the size of Earth to resolve it – a practical impossibility.

But all hope isn’t lost! If instead of a single telescope, we built an array of telescopes located all over Earth, we could simultaneously image the galactic center, and use the technique of VLBI (very long-baseline interferometry) to resolve the black hole’s event horizon. The array would only have the light-gathering power of the individual telescopes, meaning the black hole (in the radio) will appear very faint, but they can obtain the resolution of a telescope that’s the distance between the farthest telescopes in the array! The planned Event Horizon Telescope, spanning four different continents (including Antarctica), should be able to resolve under 10 micro-arc-seconds, imaging a black hole directly for the first time and answering the question of whether or not they truly contain an event horizon. What began as a mere mathematical solution is now just a few years away from being observed and known for certain!

SP-Logo-300.en