NASA’s New Horizons Spacecraft Begins Intensive Data Downlink Phase | NASA

Icy Mountains of Pluto
This close-up image of a region near Pluto’s equator captured by NASA’s New Horizons spacecraft on July 14, 2015 reveals a range of youthful mountains rising as high as 11,000 feet (3.4 kilometers) above the surface of the dwarf planet. This iconic image of the mountains, informally named Norgay Montes (Norgay Mountains) was captured about 1 ½ hours before New Horizons’ closest approach to Pluto, when the craft was 47,800 miles (77,000 kilometers) from the surface of the icy body. The image easily resolves structures smaller than a mile across. The highest resolution images of Pluto are still to come, with an intense data downlink phase commencing on Sept. 5, 2015.
Credits: NASA-JHUAPL-SwRI

If you liked the first historic images of Pluto from NASA’s New Horizons spacecraft, you’ll love what’s to come.

Seven weeks after New Horizons sped past the Pluto system to study Pluto and its moons – previously unexplored worlds – the mission team will begin intensive downlinking of the tens of gigabits of data the spacecraft collected and stored on its digital recorders. The process moves into high gear on Saturday, Sept. 5, with the entire downlink taking about one year to complete.

“This is what we came for—these images, spectra and other data types that are going to help us understand the origin and the evolution of the Pluto system for the first time,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute (SwRI) in Boulder, Colorado. “And what’s coming is not just the remaining 95 percent of the data that’s still aboard the spacecraft— it’s the best datasets, the highest-resolution images and spectra, the most important atmospheric datasets, and more. It’s a treasure trove. ”

Even moving at light speed, the radio signals from New Horizons containing data need more than 4 ½ hours to cover the 3 billion miles to reach Earth.

Read Full Story Here

NASA Scientists Help Understand Newly Discovered Planet | NASA

Discovery image of the exoplanet 51 Eridani b taken in the near-infrared light with the Gemini Planet Imager on Dec. 21, 2014. T
Discovery image of the exoplanet 51 Eridani b taken in the near-infrared light with the Gemini Planet Imager on Dec. 21, 2014. The bright central star has been mostly removed to enable the detection of the million-times fainter planet.
Credits: Gemini Observatory and J. Rameau (UdeM) and C. Marois NRC Herzberg

One of the best ways to learn how our solar system evolved is to look at younger star systems in the early stages of development. Recently, a team of astronomers including NASA scientists discovered a Jupiter-like planet within a young system that could serve as a decoder ring for understanding how planets formed around our sun. The new planet, called 51 Eridani (Eri) b, is the first exoplanet discovered by the Gemini Planet Imager (GPI), a new instrument operated by an international collaboration, and installed on the 8-meter Gemini South Telescope in Chile. The GPI was designed specifically for discovering and analyzing faint, young planets orbiting bright stars via “direct imaging,” in which astronomers use adaptive optics to sharpen the image of a target star, then block out its starlight. Any remaining incoming light is then analyzed, and the brightest spots indicate a possible planet. “This is exactly the kind of planet we envisioned discovering when we designed GPI”, says James Graham, professor at the University of California, Berkeley, and project scientist for GPI. Other methods of planet detection are indirect, such as the transit method used by NASA’s Kepler mission, in which it discovers planets by measuring the loss of starlight when a planet passes in front of its star. As Bruce Macintosh, a professor of physics at Stanford University and member of the Kavli Institute for Particle Astrophysics and Cosmology figuratively described, to detect planets, Kepler sees their shadow while GPI sees their glow.

Read Full Story Here

From a Million Miles: The Moon Crossing the Face of Earth

moon's far side overlapping the Earth

This image shows the far side of the moon, illuminated by the sun, as it crosses between the DSCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away.
Credits: NASA/NOAA

 

EPIC maintains a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere. Once EPIC begins regular observations next month, the camera will provide a series of Earth images allowing study of daily variations over the entire globe. About twice a year the camera will capture the moon and Earth together as the orbit of DSCOVR crosses the orbital plane of the moon. These images were taken between 3:50 p.m. and 8:45 p.m. EDT on July 16, showing the moon moving over the Pacific Ocean near North America. The North Pole is in the upper left corner of the image, reflecting the orbital tilt of Earth from the vantage point of the spacecraft. This image shows the far side of the moon, illuminated by the sun, as it crosses between the DSCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credits: NASA/NOAA The far side of the moon was not seen until 1959 when the Soviet Luna 3 spacecraft returned the first images. Since then, several NASA missions have imaged the lunar far side in great detail. The same side of the moon always faces an earthbound observer because the moon is tidally locked to Earth. That means its orbital period is the same as its rotation around its axis. In May 2008 NASA’s Deep Impact spacecraft captured a similar view of Earth and the moon from a distance of 31 million miles away. The series of images showed the moon passing in front of our home planet when it was only partially illuminated by the sun.

Read Full Story Here